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Comparison of two free-energy expressions and their implications in surface enrichment
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We compare two free-energy expressions, developed by Cohen and Muthukumar [J. Chem. Phys. 90,
5749 (1989)] and by Jerry and Nauman [J. Colloid Interface Sci. 154, 122 (1992)], in terms of their pre-
dictions concerning surface enrichment. We show that a term must be added to the former expression so
that it may predict the correct dependence of the surface composition on the bulk. The latter expression
does predict the correct dependence. We have also derived the quadratic surface-energy contribution

from a finite (nonzero) range interaction model.

PACS number(s): 68.10.Cr, 68.45.Gd, 82.65.Dp

The behavior of a binary mixture near a surface has at-
tracted much attention in recent years. This interest has
been fueled by new experimental techniques such as neu-
tron reflectivity, secondary-ion mass spectroscopy, and
nuclear-reaction analysis, which can accurately measure
the concentration profile [1-5]. Resolutions of well un-
der 100 nm have been reported, making possible a direct
comparison between theory and experiment. A bounding
wall, or even a vacuum, can cause the concentration of
one component in a miscible mixture to be higher near
the surface than in the bulk. Commonly called surface
enrichment, this has been widely investigated [1-4]. In
immiscible mixtures, the course of spinodal decomposi-
tion can be significantly altered near an interface; Jones
et al. [6] observed composition waves propagating out-
ward from the boundary, and their findings were support-
ed by the theoretical work of Ball and Essery [7].

These same experimental methods have recently been
applied to thin films, in which the influences of two sur-
faces affect the mixture [5,8,9]. In several of these stud-
ies, a composite film was formed by bringing together two
individual thin films. Each of the thin films had a compo-
sition equal to one of the bulk coexistence concentrations.
Concentration-profile measurements were recorded as the
composite film equilibrated. Such an experimental design
should be ideal for observing equilibrium phenomena
such as the critical-temperature shift [10], wetting transi-
tions [11], and the enrichment-depletion duality [10].

Theoretical studies of these phenomena have been
based on the idea that the free energy of the mixture gen-
erally decreases with time and reaches a relative
minimum at equilibrium. Given a mathematical expres-
sion for the free energy, an equilibrium concentration
profile is often calculated by a minimization procedure.
This profile may then be compared to the experimentally
measured one. The free energy is a functional that de-
pends on the concentration profile, and the general form
may be written as

F=[ 7 |6f(9)+ 59,7 |dz+D40,6.000) » "
with

Af=f(d)—f(d,)—f'(d, NDp—¢,) , )
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where F is the excess free energy of mixing, f is the free
energy of mixing for a uniform mixture, z is the distance
from the surface, and « is the gradient energy parameter.
The volume fraction is denoted ¢, with ¢, and ¢, being
the bulk and surface values, respectively. The derivative
of f with respect to ¢ is written f’, and differentiation
with respect to distance is denoted by the subscript z.
The surface contribution to the free energy is written as
®, and may depend on the surface concentration and
higher derivatives as well.

Obviously, the particular functional form of @ is im-
portant. In Cahn’s pioneering work [12], ® was assumed
to be a function of only one variable ¢,. He used varia-
tional calculus to write the governing differential equa-
tion and boundary condition for the equilibrium concen-
tration profile. He did not specify a particular functional
form for ®(¢,), which is necessary if one wishes to solve
the differential equation. Later, others such as Schmidt
and Binder [13] used a quadratic expression for ®(¢).
The quadratic expression is essentially phenomenologi-
cally based. However, the form is supported by a simple
direct-contact molecular-interaction model as shown in
[10].

Improvements in the quadratic approximation were
achieved by two investigations [14,15]. Both derived a
complete free-energy expression from first principles.
The analysis in [15] was based on the partition function,
and a modified Debye model was used in [14]. The
findings were similar in that ® was found to be a function
of not only ¢, but the first and second derivatives as well.
The specific functional forms in [14] and [15] differ, and
we will compare their physical implications in surface en-
richment.

Part of the motivation for this work is to improve the
correspondence between theory and experiment. Obser-
vations of ‘“‘surface flattening” in [3] indicate that the
quadratic approximation might be inadequate for calcu-
lating the profile very close to the surface. In addition,
these alternative free-energy expressions might provide
information on equilibrium interfacial phenomena, such
as wetting, which cannot be provided by a simple qua-
dratic approximation.

When ® does have a derivative dependence, the stan-
dard variational-calculus technique cannot be used to
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determine the equilibrium profile. The reason was ex-
plained in [16]; in order for the variation of the free ener-
gy to be zero, the equilibrium profile would have to satis-
fy a first-order differential equation with three boundary
conditions. As shown in [16], the equilibrium profile has
discontinuities in ¢, and ¢,, at z=0. It is these discon-
tinuities that are responsible for the apparent
overspecification of the problem. A modified
variational-calculus method, which can accommodate
discontinuities, was developed in [16]. The three bound-
ary conditions were written as

q)¢(¢0’¢20’ ¢zzO)_K¢Zo+ =0 ’ (3)
Dy, (00, $20:9220)=0 , (4)
Dy, (D0, ,0:02,0)=0, (5)

where the subscripts ¢, ¢z, and ¢zz indicate a partial
derivative with respect to ¢, ¢,, and ¢,,, respectively.
The subscript 0 indicates evaluation at z=0". The
values of ¢_ . and @,, are different due to the jump in ¢,
at the boundary. The three conditions must be satisfied
so that the variation of F is zero, which is a necessary
condition for the concentration profile to be at a free-
energy minimum.

The governing differential equation is the same regard-
less of the particular functional form of ®. However, the
boundary conditions are different. In what follows, we
will apply conditions (3)—(5) to each ® expression and in-
vestigate the physical consequences. Before doing this,
however, we can make some general observations. The
concentration is continuous at z =0, ¢0+=¢0, but the

derivatives are not: ¢  .7¢,, and ¢_ .7¢,, There-

fore, there are two additional variables, ¢,, and ¢,,;,. The
differential equation is first order and applies for z>0.
To solve this equation, only one boundary condition is
needed, and this is provided by Eq. (3). Unfortunately,
Eq. (3) also contains ¢,, and ¢,,, terms, which are auxili-
ary variables. They may be eliminated by a simultaneous
solution of Eqgs. (4) and (5), which provides a way of ex-
pressing ¢,, and ¢,,, in terms of ¢,. As will soon become
evident, the specific form of ® will affect Egs. (3)-(5), and
can dramatically influence the qualitative predictions on
surface enrichment.

The Cohen and Muthukumar (CM) ® expression can
be written as

®($,6,,6,)=D 6+ E,$1né+G,(1—$)In(1—¢)
+[H;In¢g+J;In(1—¢)]¢,

Ll Ql 2

_+—

s "¢ l("”)

+[T,lné+R,In(1—$)14,, , (6)

+

where the coefficients D through T, were defined in the
original publication [15]. In Ref. [17], Eq. (6) was substi-
tuted in conditions (3)—(5), and the equilibrium surface
concentration ¢, was found to be independent of the bulk
concentration ¢,. Experiments [1] have demonstrated
that the surface concentration does depend on the bulk.

The inconsistency arises from the form of the CM expres-
sion. Upon differentiation, Eq. (6) yields

¢¢zz=Tlln¢+Rlln(1—¢) . (7)

To satisfy the third boundary condition, Eq. (7) must be
set to zero. This indicates that ¢, only depends on T,
and R;. In order for the surface composition to depend
on the bulk, ®,,, must be a function of ¢, and/or ¢,,.
This would be the case if CM contained a ¢2, term, or if
the coefficient of their ¢,, term contained a ¢, depen-
dence.

The Jerry and Nauman (JN) ® expression may be writ-
ten as

D(¢,¢,,0,,)=D¢p+E¢*+Go,+H (¢, +Jd¢,
+L¢,,+Q(¢,,)*+Tdd,,+R . (8)

The parameters D through T were defined in [14]. They
are all related to the intermolecular interaction-energy
functions e;;(r), where r is the distance separating two
molecules and e;; is the interaction energy. The subscript
ij can represent an interaction between two molecules of
the mixture or between a mixture and a wall molecule.
Actually, D through T do not depend on the e;; functions
directly, but rather on spatially weighted integrals of
these functions. All the parameters in ® can be estimat-
ed by using an approximation, such as the Lennard-Jones
potential, for e;;(r). Not all the parameters are indepen-
dent; note that J is exactly equal to /2, where « is just
the gradient energy parameter. The derivation may be
found in [18].

After the JN expression is included in Egs. (3)-(5), we
find

D +2E¢0+J¢20+T¢220_K¢20+:0 ’ (9)
G +2H¢,,+J¢y=0, (10)
L +2Q¢ZZO+T¢0:O . (11)

Equations (10) and (11) can be solved for ¢,, and ¢,,,, re-
spectively, and then substituted into Eq. (9) to give

2 2
61 _TL|, |,y ST
2H 20

20 20 |"

¢O—K¢20+ =0.

(12)

In this case, the surface concentration does depend on the
bulk value, through ¢_ .. Equation (12) can also be writ-

ten

_lu'l_g¢0—K¢zo+:0 ’ (13)
with
_GJ  TL _
u1—2H+2Q D, (14)
T2 JZ
=+ __9F .
g 20 + 2 (15)

Here, we have associated the coefficients of the JN ex-
pression with the coefficients of the conventional
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derivative-free model ®g:
Ps($)=—mp— 384" . (16)

Let us call ¢,(z) the extremal profile when the JN expres-
sion is used as the surface-energy expression, and let
¢5(z) be the extremal profile when @ is used. Since ®g
is derivative free, there are no discontinuities at z =0,
and the standard variational-calculus techniques apply.
The boundary condition for ¢¢(z) is

ddg

K$,0= a0 (&) . (17)
From Egs. (13), (16), and (17), it is clear that ¢5 and ¢,
satisfy nearly the same boundary condition and
differential equation. Therefore, for z >0, ¢;(z)=¢¢(z).
At z=0, ¢, is continuous and therefore ¢;(0)=¢(0).
The values of the first and second derivatives of ¢; are
discontinuous, but may be calculated by substituting
¢5(0) for ¢, in Egs. (10) and (11) and solving for ¢,, and
&,,0, respectively. This finding is interesting because it in-
dicates that the conventional quadratic expression is
more significant than just a phenomenological approxi-
mation. In fact, the JN expression should predict exactly
the same profile as the quadratic. The only difference is
the derivative jumps at the boundary. At this time, it is
difficult to say whether the discontinuities are artifacts of
the mathematics or whether they represent something
more physically meaningful. Perhaps, the jump in the
first derivative may be a precursor to the ‘“surface-
flattening” effect that was reported in [3].

The temperature dependence of all the parameters in
the JN expression was reported in [14]. Using this infor-
mation along with Eqgs. (14) and (15), we conclude that
both u, and g vary as the inverse temperature. In addi-
tion, the ratio w,/g should be relatively independent of
temperature. A simple direct-contact interaction model
[10] can predict the same dependence. Jones et al. [1]
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calculated values of u; and g from data obtained by
forward-recoil spectrometry. However, their data were
reported at a single temperature. Currently, we do not
know of anyone who has measured the temperature
dependence of these parameters.

The CM expression does include the surface entropic
terms E ¢ In¢d and G,(1—¢)In(1—¢). These arise due to
the influence of the surface on the entropy of the polymer
mixture. The presence of a surface reduces the number
of possible configurations available to the polymer mole-
cules. The JN expression does not include the surface
effect on the entropy. This effect should be small for mix-
tures consisting of two polymers having nearly the same
molecular weight.

One might expect E; and G, to approach zero as the
degree of polymerization decreases, and the surface en-
tropic effect should be negligible for a monomer mixture.
It is in this limit that the CM and JN expressions should
be compared. Then, there is only one derivative-free
term in CM, namely D;¢. To be consistent with JN, the
CM expression should also contain a ¢? term.

In the derivation of JN [14], interactions between the
individual mixture and wall molecules were treated in the
same way as the interactions between the mixture mole-
cules themselves. This is in contrast to the short-ranged
(8-function) surface interaction that was assumed in the
derivation of CM. We have shown that the conventional,
derivative-free quadratic expression for ® should make
essentially the same predictions for equilibrium surface
behavior as JN. Apparently, the wall-mixture interaction
range must be substantially larger than that considered in
IN in order to see “long-range” effects. To model this
type of behavior, the integral term in the free energy
would have to be modified to include the long-range in-
teractions. A phenomenological approach along these
lines has been reported in [19]. A derivation of such a
free-energy expression from first principles has not yet
been performed.
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